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Amplitude equations for isothermal double diffusive convection
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Center for Nonlinear Dynamics and Department of Physics, University of Texas, Austin, Texas 78712

~Received 5 December 1996!

Amplitude equations are derived for isothermal double diffusive convection near threshold for both the
stationary and oscillatory instabilities as well as in the vicinity of the codimension-2 point. The convecting
fluid is contained in a thin Hele-Shaw cell that renders the system two dimensional, and convection is sustained
by vertical concentration gradients of two species with different diffusion rates. The locations of the tricritical
point for the stationary instability and the codimension-2 point are found. It is shown that these points can be
made well separated~in the Rayleigh numberRs of the slow diffusing species! as the Lewis number varies.
Hence the behavior near these points should be experimentally accessible.@S1063-651X~97!01705-4#

PACS number~s!: 47.20.Bp, 47.20.Ky, 03.40.Kf
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Thermosolutal convection@1–5# and convection in binary
mixtures heated from below@6–13# have been widely stud
ied both theoretically@1–5,9–13# and experimentally@7,8#.
They are examples of hydrodynamical systems whose be
ior can be characterized by two diffusing scalars. In th
systems, above a critical value of the thermal Rayleigh nu
ber, stationary or oscillatory convection arises depending
the value of the solutal Rayleigh number for the therm
solutal system or of the separation ratio for the binary m
ture. Another system that exhibits these instabilities is i
thermal double diffusive convection in a Hele-Shaw c
@14,15# with fixed concentration boundary conditions at t
upper and lower boundaries of the experimental cell. T
system is characterized by the competition between the
stabilizing effect of a fast diffusing solute and the stabilizi
effect of a slowly diffusing solute. These systems generica
have a codimension-2 point~CTP! where a line of stationary
instability intersects a line of oscillatory stability and a t
critical point ~TRP! on the line of stationary instability nea
the CTP.

One of the differences@15# between the binary mixture
and the isothermal double diffusion problem is the value
the Lewis numbert. For the binary mixturet is the ratio of
the diffusivity to the thermal diffusivity; for the isotherma
problem it is the ratio of the diffusivity of the slower diffus
ing species to that of the faster. The value oft for the two
binary mixtures which have been extensively studied is
order 1022 @12#. This leads to the theoretical prediction@12#
that both the CTP and the TRP lie at separation ratios wh
are small in magnitude and negative. Experimentally
change from a forward to a hysteretic-stationary bifurcat
has been found at a positive value of separation ratio in
low temperature mixture@8#. In isothermal convectiont can
be varied from 0.1 to nearly 1 by appropriately choosing
solutes@15#. We show below that these relatively large va
ues of t mean that the TRP and CTP occur at Rayle
numbers~of the slowly diffusing species! of order 40 and
that the relative separation ratio of these two points is
order one. Double diffusive convection in a Hele-Shaw c
should then be a promising system in which to experim
tally investigate behavior near the TRP and CTP. We a
present amplitude equations near threshold for both the
551063-651X/97/55~5!/6270~4!/$10.00
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tionary and oscillatory instabilities and around the po
where these instabilities collide.

If w/d!1 ~w andd being the thickness and the height
a Hele-Shaw cell, respectively!, then the system can be con
sidered two dimensional, and in the Navier-Stokes equa
the termn¹2uW can be replaced by212nuW /w2 as appropriate
for this approximation@16# ~n is the kinematic viscosity!. In
the conducting state, the fluid is at rest, and the dimensio
concentrationsĉs and ĉf read

ĉs5cs0~12 ẑ/d!, ĉf5cf0~ ẑ/d!, ~1!

whered is the depth of the fluid andẑ the dimensional ver-
tical coordinate. We nondimensionalize the hydrodynam
equations as in Ref.@15#. We assume that vertical velocit
vanishes on the boundariesz50,1 @6#, and periodicity in the
horizontal coordinatex. The typical experimental value of
modified Schmidt numbers512nd2/Dfw

2 is of the order
105 @15#. Thus we work with the hydrodynamic equations
the limit of s going to infinity. The basic dimensionless no
linear equations describing the convective state in
Oberbeck-Boussinesq approximation with the Soret te
@17# neglected can be written as@18#

S D 2Rs]x Rf]x

]x 2tD1] t 0

]x 0 2D1] t
D jW5S 0

J~c,Cs!

J~c,Cf !
D , ~2!

where jW (x,z) is a vector field with componentsc ~stream
function!, andCs andCf are the deviation of the concentra
tions from the conduction profile.D andJ( f ,g) are the La-
placian and Poisson bracket in the variablesx andz, respec-
tively. The Rayleigh numbers for the slow (i5s) and for the
fast (i5 f ) species are defined byRi5a ici0gdw

2/12nDf ,
with g the acceleration due to gravity,n the kinematic vis-
cosity, anda i the derivative of the logarithm of the densit
with respect toci .

Linear analysis of Eq.~2! yields the dispersion relation
6270 © 1997 The American Physical Society
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l21S k2~11t!1q2
Rs2Rf

2k2 Dl

1k4t1q2~Rs2tRf !50, ~3!

wherek25p21q2. From Eq.~3! critical Rayleigh numbers
for the stationary instabilityRfc

ss and the oscillatory instabil-
ity Rfc

oscare obtained. At their minima with respect toq, they
are

Rfc
ss5

Rs

t
14p2, ~4a!

Rfc
osc5Rs14p2~11t!. ~4b!

The critical wave numberq is found to bep for both
instabilities. For finites, there is a wave number differenc
between the stationary and oscillatory modes that is of o
1024. The frequency at onset is given by

vo
2524p4t21p2~12t!Rs , ~5!

which vanishes at the CTP,

Rs
c25

4p2t2

12t
, Rf

c25
4p2

12t
, ~6!

as can be easily verified. The conduction state loses stab
at a stationary bifurcation whenRf reachesRfc

ss . The ampli-
tude equation for the stationary branch has the form

t0] tA5eA2g3AuAu2. ~7!

Heree5(Rfc2Rfc
ss)/Rfc

ss . The nonlinear coefficientg3 deter-
mines the bifurcation behavior of the system. To compute
we expand the fields and the Rayleigh number in terms
small parameterh,

Rf5Rfc
ss1h2R2

ss1h4R4
ss1••• , ~8a!

jW5
1

2
~hjW1A1h2jW2uAu21h3jW3AuAu21•••1c.c.!, ~8b!

and replace] t by h2]T . Inserting these expansions into E
~2!, we find a series of linear problems. At orderh, the
equation

L0jW1[S D 2Rs]x Rfc
ss]x

]x 2tD 0

]x 0 2D
D jW150 ~9!

has the solution

jW15S i
21/2pt
21/2p

D exp~2 ipx!sin~pz!. ~10!

At second order we find that the solutionujW2u}sin(2pz).
The integrability condition@17# involves the solution of the
er

ity

t,
a

adjoint of Eq.~9!, which is due to the non-Hermiticity of the
operatorL0 , and at third order it yields Eq.~7!, with g3 and
t0 given by

g352
1

16Rfc
ss SRs

t3
2Rfc

ssD ,
~11!

t052
1

2p2Rfc
ss SRs

t2
2Rfc

ssD .
The TRP, the point at whichg3 vanishes, is found to be

Rs
tc5

4p2t3

12t2
. ~12!

For Rs,Rs
tc , g3 is positive and the bifurcation is supe

critical and stable. Otherwise it is subcritical. At next orde
a quintic term2g5AuAu4 is added to the right-hand side o
Eq. ~7!. It is given by

g55
1

Rfc
ss Fg38 1

3

640 SRs

t5
2Rfc

ssD2
11g3

2

120p2G . ~13!

At the TRPg553(12t2)/640t2.0, so that the bifurcation
is forwards andA;e1/4.

Using Eqs.~12! and ~6! we compute the location of the
TRP and the CTP when NaCl and propylene glycol are u
as the fast and slow diffusing solutes, respectively. Th
location is shown in the linear stability diagram in Fig.
The separation between these points inRs is given byRs

c2

2Rs
tc54p2t/(12t).

FIG. 1. Stability diagram for isothermal double diffusive co
vection as a function of the Rayleigh numbers of the fast and s
diffusing species, fort50.63. This corresponds to NaCl and pr
pylene glycol used as fast and slow diffusing solutes, respectiv
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In order to derive amplitude equations for the oscillato
branch, we expandjW andRf as in Eq.~8! and time as] t
5] t01h2] t11••• . Inserting these expansions into the h
drodynamic equations~2!, one finds a series of linear prob
lems. If at first order inh, we select as a solution a superp
sition of right and left traveling waves~see Ref.@15#!, at
third order, the corresponding solvability conditions yield t
complex amplitude equations

t0
oscȦR5eo~11 ic0!AR2~KuARu21M uALu2!AR ,

~14a!

t0
oscȦL5eo~11 ic0!AL2~KuALu21M uARu2!AL ~14b!

@hereeo[(Rf2Rfc
osc)/Rfc

osc#, whose coefficients are given b

4t0
osc5

4

Rfc
osc, ~15a!

c05
2p2t

v0
, ~15b!

K5
ip4

2v0Rfc
osc, ~15c!

M5
2p6~11t!~v0

214p4t!

Rfc
osc~v0

214p4!~v0
214p4t2!

1
ip4~v0

4216p8t2!

Rfc
oscv0~v0

214p4!~v0
214p4t2!

. ~15d!

The real part ofM is positive. The real part ofK vanishes
everywhere along the oscillatory branch, this is so even
finite s as pointed out in Ref.@15#. This is also the case fo
thermohaline convection@21#.

Near the CTP the two eigenvalues of the linear probl
are near zero and the conductive state~1! becomes unstable
against both the stationary and the oscillatory modes@20#. In
the vicinity of this point the dynamics is described by@9,19#

Ȧ5B,

Ḃ5m1A1m2B1 f ~A,B!, ~16!

where f (A,B) is a nonlinear function. From the dispersio
relation ~3! it is readily seen that the unfolding paramete
are given by

m15p2t~Rf2Rfc
ss! and m25

1
2 ~Rf2Rfc

osc!. ~17!

We derived Eq.~16! following the method of Ref.@2#. In
this method it is assumed thatjW5jW (x,z,A,Ȧ). Owing to
periodicity in thex direction and the lack of distinction be
tween left and right, Eq.~16! must be equivariant with re
spect to the group O~2!, i.e., the group of reflections an
rotations of a circle. This tells us how the form off (A,Ȧ)
expanded in Taylor series should be

f5 f 1AuAu21 f 2BuAu21 f 3A
2B*1 f 4AuBu21 f 5A*B

2

1 f 6BuBu21••• . ~18!
r

We also expandjW in power series ofA andB,

jW5
1

2 S jW1A1fW 1B1 (
i , j ,k,l

jW i jkl A
iBjA* kB* l1c.c.D . ~19!

Inserting this expansion and Eq.~18! into Eq. ~2! and equat-
ing the different powers of the amplitudes yields a seque
of problems that are to be solved order by order. At fi
orderjW1 is still given by Eq.~10! andfW 1 reads

fW 15
1

4p2 S 0
1/t2

1
D exp~2 ipx!sin~pz!. ~20!

The coefficients off (A,B) appear in the third order equa
tions, whose solvability conditions yield the values of t
coefficientsf j ,

f 15
p4

4
, ~21a!

f 25 f 352
p2

8

11t

t
, ~21b!

f 45 f 552
11t2

16t2
, ~21c!

f 650. ~21d!

The behavior of Eq.~16! in the vicinity of the CTPm1
5m250 can be classified in the (m1 ,m2) plane, and it is
essentially the same as the one for binary mixture@6# or
thermohaline convection@2#. We encounter a Hopf bifurca
tion at m250 and a stationary bifurcation atm150. Quad-
rants I (m1 ,m2.0) and IV ~m1.0, m2,0! have one un-
stable fixed point which corresponds to the conducting st
In quadrant III (m1 ,m2,0) the conducting state is stable an
the fixed points (B50,uAu252m1 / f 1) are unstable.

When m1,0, the stability of (B,A)5(0,0) depends on
the value ofm2 . Starting in quadrant III, asm2 passes
through zero, one finds a supercritical Hopf bifurcation a
oscillatory convection is possible. Asm2 is increased, the
size of the limit cycle grows until it encounters the unstab
fixed points at the valuem2c where it disappears. This critica
value where the oscillatory branch joins a branch of ste
solutions is given by@2,6#

m2c52
f 2m1

5 f 1
52

11t

10tp2 m1[2a~t!m1 . ~22!

In the plane (Rs ,Rf), this corresponds to a lineLc located
aboveRfc

osc but below Rfc
ss for Rs.Rs

c2. Specifically, the
equation ofLc is given by

Rf5Rs

112ap2

112ap2t
1
4p2~11t12ap2t!

112ap2t
. ~23!

Another way to find the coefficients off (A,B) @6# is by
matching Eq.~16! with Eq. ~14!. Choosingh25m2 as a
small parameter and inserting the expansion] t→] t1h2] t1
1••• and the scaling ofA,
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A5h@AR~ t1!exp~ iv0t !1AL~ t1!exp~2 iv0t !#, ~24!

into Eq.~16! leads at third order inh to two equations of the
form ~14!, whose coefficients~K̃ andM̃ ! are given in terms
of f j . ComparingK̃ and M̃ with the coefficientsK andM
for v0!1 ~hence we expandM in Taylor series! one gets the
relations

2 i f 1
2v0

1
f 22 f 3
2

1~ f 52 f 4!
iv0

2
52K52

ip4

8v0
~25!

and

2
i f 1
v0

1 f 32 i f 5v052M52
ip4

4v0
2

p2~11t!

8t

1
iv0~11t2!

16t2
1O~v0

2!,

~26!

from which we can find the values of the coefficientsf j , and
they agree with Eq.~21!. Similarly it is possible to match
f 1 with g3(Rs

c2).
Equation~16! has been derived analytically in the pre
.

ko

v.
ence of aZ(2) reflectional symmetry for thermohaline@2#
and binary mixture convection@6# in which f 4 and f 5 vanish.
In the presence of O~2! symmetry, we have these coefficien
that enable us to match Eq.~16! with the amplitude equations
of the oscillatory branch.

In conclusion, the location of the TRP for the stationa
branch and the CTP as a function of the Lewis number h
been determined. We pointed out that since the TRP and
CTP are well separated, their location in the plane (Rs ,Rf)
should be determined in an experimental system. A quin
term for the stationary bifurcation was computed. Thus
are able to predict the crossover from the critical behavio
which A;e1/2 to tricritical behavior in whichA;e1/4. We
derived an amplitude equation that describes the dynamic
the system in the vicinity of the CTP. The most interesti
event takes place whenm1,0 andm2 changes sign from
negative to positive producing a limit cycle that disappears
m2c .
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