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Amplitude equations for isothermal double diffusive convection
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Amplitude equations are derived for isothermal double diffusive convection near threshold for both the
stationary and oscillatory instabilities as well as in the vicinity of the codimension-2 point. The convecting
fluid is contained in a thin Hele-Shaw cell that renders the system two dimensional, and convection is sustained
by vertical concentration gradients of two species with different diffusion rates. The locations of the tricritical
point for the stationary instability and the codimension-2 point are found. It is shown that these points can be
made well separate@n the Rayleigh numbeR; of the slow diffusing speci¢sas the Lewis number varies.
Hence the behavior near these points should be experimentally acces3ilf163-651X97)01705-4

PACS numbe(s): 47.20.Bp, 47.20.Ky, 03.40.Kf

Thermosolutal convectiofl—5] and convection in binary tionary and oscillatory instabilities and around the point
mixtures heated from beloyW6—13] have been widely stud- where these instabilities collide.
ied both theoreticallf1-5,9-13 and experimentally7,8]. If w/d<1 (w andd being the thickness and the height of
They are examples of hydrodynamical systems whose beha@ Hele-Shaw cell, respectivg/ythen the system can be con-
ior can be characterized by two diffusing scalars. In thes&idered two dimensional, and in the Navier-Stokes equation
systems, above a critical value of the thermal Rayleigh numthe termyV2( can be replaced by 12vi/w? as appropriate
ber, stationary or oscillatory convection arises depending ofPr this approximatiorj16] (v is the kinematic viscosity In
the value of the solutal Rayleigh number for the thermo-the conduqting state,Athe fluid is at rest, and the dimensional
solutal system or of the separation ratio for the binary mix-concentrationg andc; read
ture. Another system that exhibits these instabilities is iso-
thermal double diffusive convection in a Hele-Shaw cell
[14,15 with fixed concentration boundary conditions at the
upper and lower boundaries of the experimental cell. This

system is characterized by the competition between the d(?/\'/hered is the depth of the fluid and the dimensional ver-
stabilizing effect of a fast diffusing solute and the stabilizing,[ical coordinate. We nondimensionalize the hydrodynamic
effect of a slowly diffusing solute. These systems genericallyyy ations as in Ref15]. We assume that vertical velocity
have a codimension-2 poif€TP) where a line of stationary \anishes on the boundaries:0,1[6], and periodicity in the
instability intersects a line of oscillatory stability and a tri- pqrizontal coordinate. The typical experimental value of a
critical point (TRP) on the line of stationary instability near mqgified Schmidt numbes= 12vd%/Dw? is of the order
the CTP. ) ) ) 10° [15]. Thus we work with the hydrodynamic equations in
One of the difference§15] between the binary mixture the limit of o going to infinity. The basic dimensionless non-
and the isothermal double diffusion problem is the value ofinear equations describing the convective state in the
the Lewis number. For the binary mixturer is the ratio of  Oberbeck-Boussinesq approximation with the Soret term
the diffusivity to the thermal diffusivity; for the isothermal [17] neglected can be written $$8]
problem it is the ratio of the diffusivity of the slower diffus-
ing species to that of the faster. The valuerdbr the two

Cs=Cx(1-2/d),  Ci=cyo(Z/d), @

binary mixtures which have been extensively studied is of A —Rgiy Ry 0

order 102 [12]. This leads to the theoretical predictipt?] gy —7A+3, 0 =l dwcy |, @
that both the CTP and the TRP lie at separation ratios which I(4,Cy)

are small in magnitude and negative. Experimentally, a Ix 0 —A+a, ot

change from a forward to a hysteretic-stationary bifurcation

has been found at a positive value of separation ratio in the .

low temperature mixturg8]. In isothermal convectiomcan ~ Where £(x,z) is a vector field with componentg (stream
be varied from 0.1 to nearly 1 by appropriately choosing thefunction), andCs andC; are the deviation of the concentra-
solutes[15]. We show below that these relatively large val- tions from the conduction profile\ and J(f,g) are the La-
ues of r mean that the TRP and CTP occur at Rayleighplacian and Poisson bracket in the variabteandz, respec-
numbers(of the slowly diffusing specigsof order 40 and tively. The Rayleigh numbers for the slow=s) and for the
that the relative separation ratio of these two points is ofast (=f) species are defined b= @;ciogdw?/12vDy,
order one. Double diffusive convection in a Hele-Shaw cellwith g the acceleration due to gravity,the kinematic vis-
should then be a promising system in which to experimencosity, ande; the derivative of the logarithm of the density
tally investigate behavior near the TRP and CTP. We alsavith respect tac; .

present amplitude equations near threshold for both the sta- Linear analysis of Eq(2) yields the dispersion relation
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Rs— Ry 150.0 ; ; :
N+ KA (1+ 1)+ 02 iz |
bl oscillatory
unstable . -
+k*r+q%(Rs— 7R¢) =0, 3 region instability
wherek?= 72+ 2. From Eq.(3) critical Rayleigh numbers
for the stationary instabilityR?s and the oscillatory instabil- 1000 L codimension-2
ity Rfc°are obtained. At their minima with respectdpthey stationary point
are instability
Rs <
fcs:? +472, (4a)
tricritical
point B
RPS*=Rg+4m(1+ 7). (4b) 500
The critical wave numbeq is found to bew for both able reqi
instabilities. For finites, there is a wave number difference stable region
between the stationary and oscillatory modes that is of order
10*. The frequency at onset is given by
00 . . ,
w2=—4m*?+ 7%(1- 7R, (5) 0.0 25.0 ‘[ 50.0 75.0
t 2 s
. . C C
which vanishes at the CTP, Rs Ry
- 47 ? 2 47? FIG. 1. Stability diagram for isothermal double diffusive con-
s T 1-7° Ri“= 1— 7 (6) vection as a function of the Rayleigh numbers of the fast and slow

diffusing species, forr=0.63. This corresponds to NaCl and pro-

as can be easily verified. The conduction state loses stabilifg¥/ene glycol used as fast and slow diffusing solutes, respectively.

at a stationary bifurcation whelR; reachesR;s. The ampli-

tude equation for the stationary branch has the form adjoint of Eq.(9), which is due to the non-Hermiticity of the

operatorL,, and at third order it yields Ed7), with g; and

Tod A= eA—gzA|A|% (7) 7o given by
Heree=(Ri.— R{3)/Rf:. The nonlinear coefficierg; deter- ga= — 1R RSS
. : . . . 16RSS ;g fc|»
mines the bifurcation behavior of the system. To compute it, fc (11)
we expand the fields and the Rayleigh number in terms of a
small parametew, _ 1 (Rs SS)
T0=~ 5 2mss | 27 M-
2R\ T
Ri=R{+ 7°R3>+ 7R+ -+, (8a)
The TRP, the point at whichs vanishes, is found to be
- 1 . - S
£=5 (nEA+ P ElAPP+ 7PEAlAP++ce), (8D o Am?r
s 1— 2 (12)
.
and replacey; by 7?d1. Inserting these expansions into Eq. c . . ] o
(2), we find a series of linear problems. At order the For R;<Ry’, g is positive and the bifurcation is super-
equation critical and stable. Otherwise it is subcritical. At next order,
a quintic term—gsA|A|* is added to the right-hand side of
A —Rgy RS9, Eq. (7). It is given by
Lofi=| 9 —mA 0 |£=0 ©) _ 1o, 3 (Re o) 11935 13
0 -A 95"Res|8 T 640\ S fe) T 12047
has the solution At the TRPgs=3(1- 7)/640r>>0, so that the bifurcation

_ is forwards andA~ €4,
_ ! Using Egs.(12) and (6) we compute the location of the
&= — 1277 | exp(—imx)sin( 72). (100  TRP and the CTP when NaCl and propylene glycol are used
=127 as the fast and slow diffusing solutes, respectively. Their
location is shown in the linear stability diagram in Fig. 1.
At second order we find that the solutidé,|=sin(2rz). ~ The separation between these pointsRinis given by RZ*
The integrability conditiof17] involves the solution of the —RS=47%7/(1—7).
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In order to derive amplitude equations for the oscillatory e also expand in power series oA andB,

branch, we expanaf and R; as in Eqg.(8) and time asd,
=0y, t 772(9t1+--- . Inserting these expansions into the hy-
drodynamic equation€&), one finds a series of linear prob-
lems. If at first order inp, we select as a solution a superpo-
sition of right and left traveling wavetsee Ref[15]), at

1. z injA*xkpx*|
£=5 §1A+$1B+i%|§ijk|ABA B*'+c.c.|. (19

Inserting this expansion and E@.8) into Eq.(2) and equat-

third order, the corresponding solvability conditions yield theiNd the different powers of the amplitudes yields a sequence

complex amplitude equations

3 AR= €21+ o) Ar— (K| AR+ MAL %) Ar,
(143
TSSCAL: e°(1+ico)AL— (K|AL[*+M|Ag?)AL (14b)

[heree®=(R;— RYY/R{:], whose coefficients are given by

475°= Soses (159
fc
27T
CO_ ’ (15b)
wo
B i 15
= R (159
2m8(1+ T)(w(2)+47747')
- R®( ws+47%) (wi+ 47 7?)
i T wi—16772)
- (150

e o a)(z)-l- 477'4)(00(2)-}— 47*7%) "

The real part ofM is positive. The real part oK vanishes

of problems that are to be solved order by order. At first
orderél is still given by Eq.(10) and ¢, reads

0
1/7?

) exp —imx)sin(7z). (20
1

- 1
P

The coefficients of (A,B) appear in the third order equa-
tions, whose solvability conditions yield the values of the
coefficientsf,

4

T

fl:T; (219
m1l+r

fzzfsz_? ot (21b
1+ 72

fa=ts=~ 152 (219

The behavior of Eq(16) in the vicinity of the CTPu,
=u,=0 can be classified in theu(,u,) plane, and it is
essentially the same as the one for binary mixti6g or
thermohaline convectiof2]. We encounter a Hopf bifurca-

everywhere along the oscillatory branch, this is so even fofion at u,=0 and a stationary bifurcation at,=0. Quad-

finite o as pointed out in Ref.15]. This is also the case for
thermohaline convectiof21].

rants | (wy,u>>0) and IV (u,>0, u,<0) have one un-
stable fixed point which corresponds to the conducting state.

Near the CTP the two eigenvalues of the linear problemn quadrant Il (u,,,<0) the conducting state is stable and

are near zero and the conductive stdiebecomes unstable
against both the stationary and the oscillatory md@é$ In
the vicinity of this point the dynamics is described [9y19]

A=B,
B= 1A+ uB+f(A,B), (16)

where f(A,B) is a nonlinear function. From the dispersion

relation (3) it is readily seen that the unfolding parameters

are given by

pi=mr(Ri—REY)  and w,=3(Ri—RE). (17

We derived Eq(16) following the method of Ref(2]. In
this method it is assumed that= £(x,z,A,A). Owing to
periodicity in thex direction and the lack of distinction be-
tween left and right, Eq(16) must be equivariant with re-
spect to the group @), i.e., the group of reflections and
rotations of a circle. This tells us how the form BfA,A)
expanded in Taylor series should be

f="1,A|A|2+,B|A|?+ f;A’B* + f ,A|B|?+ fsA* B2

+1¢B|B|%+ - . (18

the fixed points B=0,/A|?=— u,/f,) are unstable.

When u,<0, the stability of 8,A)=(0,0) depends on
the value of u,. Starting in quadrant Ill, asu, passes
through zero, one finds a supercritical Hopf bifurcation and
oscillatory convection is possible. Ag, is increased, the
size of the limit cycle grows until it encounters the unstable
fixed points at the valug,. where it disappears. This critical
value where the oscillatory branch joins a branch of steady
solutions is given by2,6]

o foug 147

oo™~ B = 1072 M (22

1=—a(7)py.
In the plane R, R;), this corresponds to a line, located
above R%° but below RS for Ry>RS%. Specifically, the

equation ofL. is given by

A7%(1+ 7+ 2a7m?T)
1+2a7mr

R R 1+2am?
= sl+2aﬂ'27+

(23

Another way to find the coefficients d{A,B) [6] is by
matching Eq.(16) with Eq. (14). Choosing7’=pu, as a
small parameter and inserting the expansipr d;+ 772(9(1
+--- and the scaling oA,
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A= g Ar(ty)explimgt) + A (t)exp(—iwgt)], (24)  ence of aZ(2) reflectional symmetry for thermohalife]
and binary mixture convectidr®] in which f, andf vanish.

into Eq.(16) leads at third order im to two equations of the | the presence of @) symmetry, we have these coefficients

form (14), whose coefficient¢k andM) are given in terms  that enable us to match E@.6) with the amplitude equations

of f;. ComparingK and M with the coefficientK and M of the oscillatory branch.
for wg<<1 (hence we expaniil in Taylor seriesone gets the In conclusion, the location of the TRP for the stationary
relations branch and the CTP as a function of the Lewis number have
been determined. We pointed out that since the TRP and the
—if; fo,—fs iwg * CTP are well separated, their location in the plaRg,R;)
2w + 2 +(fs—14) o T —K=- Swn (25 should be determined in an experimental system. A quintic
0 0 . . .
term for the stationary bifurcation was computed. Thus we
and are able to predict the crossover from the critical behavior in
i which A~ €' to tricritical behavior in whichA~ €4 We
M +fg—ifswo=—M=— Im 7 (1+7) derived an amplitude equation that describes the dynamics of
wo 4wq 87 the system in the vicinity of the CTP. The most interesting
. 2 event takes place when;<0 and u, changes sign from
i wo(1+79) ) . " ) C !
—67 +0(w}), negative to positive producing a limit cycle that disappears at
M2 -
(26)
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